Modeling and simulation of nanoparticle separation through a solid-state nanopore.

نویسندگان

  • Talukder Z Jubery
  • Anmiv S Prabhu
  • Min J Kim
  • Prashanta Dutta
چکیده

Recent experimental studies show that electrokinetic phenomena such as electroosmosis and electrophoresis can be used to separate nanoparticles on the basis of their size and charge using nanopore-based devices. However, the efficient separation through a nanopore depends on a number of factors such as externally applied voltage, size and charge density of particle, size and charge density of membrane pore, and the concentration of bulk electrolyte. To design an efficient nanopore-based separation platform, a continuum-based mathematical model is used for fluid. The model is based on Poisson-Nernst-Planck equations along with Navier-Stokes equations for fluid flow and on the Langevin equation for particle translocation. Our numerical study reveals that membrane pore surface charge density is a vital parameter in the separation through a nanopore. In this study, we have simulated high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as the sample nanoparticles to demonstrate the capability of such a platform. Numerical results suggest that efficient separation of HDL from LDL in a 0.2 M KCL solution (resembling blood buffer) through a 150 nm pore is possible if the pore surface charge density is ∼ -4.0 mC/m(2). Moreover, we observe that pore length and diameter are relatively less important in the nanoparticle separation process considered here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemically modified solid state nanopores for high throughput nanoparticle separation.

The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was...

متن کامل

A Solid State Nanopore Device for Investigating the Magnetic Properties of Magnetic Nanoparticles

In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportion...

متن کامل

Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model

Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...

متن کامل

Non-linear modeling, analysis, design and simulation of a solid state power amplifier based on GaN technology for Ku band microwave application

A new non-linear method for design and analysis of solid state power amplifiers is presented and applied to an aluminum gallium nitride, gallium nitride (AlGaN-GaN) high electron-mobility transistor (HEMTs) on silicon-carbide (SiC) substrate for Ku band (12.4 13.6 GHz) applications. With combining output power of 8 transistors, maximum output power of 46.3 dBm (42.6 W), PAE of 43% and linear ga...

متن کامل

Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electrophoresis

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2012